Implementation and Characterization of Three-Dimensional Particle-in-Cell
Codes on MIMI) Massively Parallel Supercomputers

P.M. Lyster, P.C. Liewer, V.K. Decyk* and R.D. Ferraro

Jet Propulsion Laboratory, California Institute of Technology, Pasadena,CA91109
*Physics Department, University of CaliforniaLos Angeles, CA 90024

Abstract

A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been
developed on coarse-graincd distributed-memory massively parallel computers with
message passing communications. Our implemental.ioll is the generalization to three-
dimensions of the General Concurrent Particle-In-Cell (GCPIC) agorithm. In the GCPIC
agorithm, the particle computation is divided amongthe processors using a domain
decomposition of the ssmulation domain. In a three-dimensional simulation, the domain
can be partitioned into 1-, 2- or 3-dimensional subdomains (“slabs’, “rods’, or “cubes’)
and wc investigate the efficiency of the parallel implementation of the push for all three
choices. The present implementation runs onthe Intel Touchstone Delta machine at
Caltech; a Multiple-Instruction-Multiple-Data (MIMD) parallel computer with 512 nodes.
Woc find that the parallel efficiency of the push is very high, withthe ratio of
communication to computation time in the range 0.3%-10.0%. The highest efficiency
(>99%) occurs for alarge, scaled problem with 643 particles per processing node (-134
million pa-ticles on 512 nodes) which has a push time of about 250 nscc pcr particle per
time step. Wc have also developed expressions for the timing of the cods which are a
function of both code parameters (number of grid-points, particles, etc.) and machine-
dcpendent parameters (effective FLOP rate, andthe effective inter processor bandwidths
for the communication of particles and grid-points). These expressions can be used to
estimate the performance of scaled problems - including those with inhomogencous
plasmas - to other parallel machines once the machine-dependent parameters are known.

1. introduction

In particle-in-cell (PIC) codesl, the trgjectories of thousands to millions of particles are
calculated as the particles move under theinfluence of fields computed self-consistent.ty on
adiscrete grid. In plasma PIC codes, the electromagneti ¢ forces on the charged particles arc
computed on the grid using source terms computed from the particles. There are typicaly
tens or hundreds of particles per cell. Linking the particie orbit and the field-solve
components of the computation arc the gather/scatter stepsthat transform quantities back
and forth between the particles and the grid. These computer codes with an excess of 106
simulation particles have been used to study ionized plasmas with many orders of
magnitude more real particles. The ability to use these ‘ macro’ -particlcs isthe reason why
problems have been made tractable on existing computers. However, there is always the
need to model more accurately the position and velocity space structures that develop in
plasmas, and al so to reduce the particle noise. This can only be achieved by using more
(up to 1019 particles on the present and future generations of supercomputers.
Distributed-memory massively-parallel supercomputers are a good candidate for this
because of the inherent parallelism in following the trajectories of many particles.

The code wc have developed is an extension of previous work on the General Concurrent
Particle-In-Cell (GCPIC) algorithm?23 to three dimensions. Particle-in-cell codes are made
up of a particle-pushing component, which includes the two interpolations between the
particles and the grid (the gather/scatter), and a field-solve. Most PIC codes arc
computationally bound by the particle-pushing step, with the field-solve typically taking
less than 10% of the CPU time. In the GCPIC agorithm, the particle computation is
divided among the processors by partitioning the domain and assigning a subdomain (the
grid-points and the particlesin it) to each processor. The GCPIC algorithm was designed to
maximize the efficiency of the particle pushing step. The two primary considerations for
any parallel algorithm are to balance the processor loads and to minimize interprocessor
communication. To balance the loads, the GCPIC subdomains are created with equal
number of parzicles, which, for non-uniform particle distributions, will have unequal
numbers of grid-points. To minimize interprocessor communication, the particles and grid-
points arc in the same processor so that the gather/scatter operations can be performed with
No interprocessor communication. In the course of the calculation, messages arc needed to
ensure computational consistency of the grid quantities across domain boundaries and to
pass particles to ncw processors as they cross domain boundaries. The efficiency of this
approach is enhanced for coarse-grained parallel computers where a large number of the
particles and grid-points can be stored pcr processor leading to low ratios of
communication time to computation time,

In the particle push portion of our GCPIC code, the communication burden is [a] the cost
of passing particles between processor domains; and [b] the cost of communicating
particle-moment data (density and current) between the edges, or ‘guard-cells’, of the
processor domains; thisis needed to ensure consistency of the resulting moment fields

2

(note, thisis the only context in which the expression ‘guard-cell” will be used in this
paper). These are the only communication costs which will be analyzed in this paper. The
field-solve portion involves other communication costs which arc not considered in the
work presented here. In the most general case, the GCPIC uscs a second decomposition “
for the field-solve. For example, in the case where distributed fast Fourier transform

(FFT) techniques arc used, the secondary decomposition needs to have equal grid-points
pcr processor, whereas particle load balancing considerations may dictate a non-uniform
primary decomposition3. The communication burdens for the field-solve arc [a] the cost of
passing particle-morncnt and field quantities between the primary and secondary
decomposition; {b] any costs of communicating field between the edges, or ‘guard-cells’,
of the secondary domains; and [c] any costs of communicationsin a distributed (say FFT)
field-solve. These costs can be considerable3, but are very highly dependent on the method
used to solve the field equations and thus arc not discussed here. A code with afinite
diffcrence field-solve and uniform particle distribution, for which only one decomposition
is nceessary, has the minimal communication costs.”

The code described here has been setup to be atestbed for the assessment of different
particle and field decompositions, and algorithms. The knowledge wc learn from thisis
expected to be used to find efficient decompositions for particle-in-ccl] codes that will study
strongly inhomogeneous plasmas, such as a dense charged particle beam, as well as for the
Numerical Tokamak projects. Our results may also be useful for particle hydrodynamic
particle methods which have relatively fewparticles per cell but whose computational
burden may still be high. Our testbed code is a three-dimensional electrostatic PIC plasma
simulation code on Caltech's Inicl Touchstone Delta (S 12 processors) machine and Gamma
(64 processors) machines. These are coarse-grained memory Muhip]e-instruction-
Multiple-Data (MIMD) supercomputers With message passing communication.

For the purposes of this paper it is necessary to distinguish between the dimensionality of
the problem and the dimensionality of the domain decomposition. in this paper the lower
case character ‘d’ refersto the former. Therefore asitnple one-dimensional two-stream
instability can be modeled with a d=1 code. We arc mostly concerned with the
performance of athree-dimensional code (d=3) since such codes will carry the forefront of
current research. The dimensionality of the domain decompositions is specified by upper
case ‘D’. In this paper we will describe primary decompositions into slabs (D=1), rods
(D=2), and cubes (D=3). For example, in a one-dimensional slab decomposition a domain
includesall y andz for arange of x; in atwo-dimensiona “rod” decomposition adomain
includesall z for arange of x and y; for athree dimensional “cube” a domain includes a
range of X, y, and z. In a spatially homogeneous maxwellian plasma the cubes have
minimum surface tovolume ratio and would minimize the number of particles that mustbe
exchanged among processors. This situation may change for simulations with directed
beams or currents.

For our electrostatic code on the Delta wc can fit about 290,000 particles pcr node. Using
512 nodes on the Delta, wc have run up to 150 million particles with a push time of 0.25

microseconds per particleper time step (electrostatic push with tri-quadratic (27 point)
interpolations for gather/scatter).

We have studied the efficiency of the code for the three dimensionalities of the
decomposition (D=1, 2 and 3) for afixed problem size and varying number of processors.
We found that the efficiency was generally insensitive to the dimensionality of the
decomposition for the parameters studied and that even for these fixed problem-size runs,
the efficiency was quite high (>90%). We expect that for large-scale problems the
dimensionality will matter. For example, for a homogeneous maxwellian plasma the most
efficient decomposition in terms of the surface to volume ratio of the domains - and that
would be the main factor that would determine communication overhead - isD = 3. Runs
were also made in which only the number of particles or grid-points was varied. It was
found that even for a case where 40% of the particles were exchanged at each time step, the
ratio of communication to computation time was still low (5.5%). Wc also discuss the case
where the nodes are fully utilized, that is, scaled problems that fill the physical memory of
each processor, and whose size is proportional to the number of processors Np. For these
runs wc find that the ratio of communication to CPU timeis small (-3.0-3) and
approximately independent of N,. We have also analyzed runs with the higher compiler
optimization -04 and evaluated a push time of about 250 nsecper particle per time step.

We have also developed a general formulation for the timing-behavior of the code in terms
of basic parameters -- the total number of processors N,, the maximum memory pcr
processor, the total number of grid-points Ny, the total number of simulation particles N,
the effective rate of floating point operations (FLOPS) F, and the effective interprocessor
bandwidths for the communication of particles By, and grid-points B,,. Our predictive
formulation is found to be successful in predicting code performance on the Delta (with
some caveats) and can be used to estimate the performance of problems on other parallel
computers once the machine-dependent parameters have been determined.

Our approach represents an implementation that is applicable to coarse-graincd memory
(greater than 1 megabyte per processor) MLMD parallel computers. It is aso specific to the
set of problems where long range forces on the geometrical mesh dominate over the short
interparticle forces - that is, the particle-mesh (PM) method. We note that particle codes
that make usc of Data Parallel coding techniques are under study®7. These codes often
have the advantage of being more easily debuggable, but with present software arc not
always capable of using the flexible domain decomposition strategies that may be used in
MIMD programming. Data Parallel algorithms have also been developed for the case
where some correction to short range forces is needed, such asin some stellar dynamics
codes®. Our paper is concerned with both the performance and the. development of a
simple algorithm that predicts the performance of the GCPIC method for given machine
parameters. Our analysis pertains directly to the case of uniform periodic plasmas; wc will
make some comments in Section 4 on the widerrange applicability, particularly for non-
uniform plasmas. We note other work in the ficld that relate to unstructured problemsin a
Data Parallel framework?, unstructured problems in MIMD! 0, and fast parallel tree codes
for gravitational and fluid dynamical problems!!.

In Sec. 2, the parallel implementation of the code is presented. Section 3 presents
performance results on the efficiency of the particle push for several sets of runs. Section 4
presents the derivation of the code performance expression and compares predictions with
runs in Sec. 3. Qur conclusions arc presented in Sec. 5

2,implementation of the Code

The codeis implemented in parallel using the GCPIC algorithm?? which divides the
particle computation among the processors using a domain decomposition: The
computational domain is partitioned into subdomains with approximately equal numbers of
particles and a subdomain, including grid-points and particles, is assigned to each
processor. For uniform particle distributions, the subdomains arc equal in size. Each
processor aso stores guard-cells around the periphery of its domain which are needed in
interpolations between particles and grids. A GCPIC decomposition for a two-dimensional
code is shown in Fig. 1.

There arc four steps in the GCPIC particle push. The frost step of the particle push isthe
particle update, e.g., the advance of the positions and velocities. For the electrostatic code
the electric field E provides the force on the particles and the field is interpolated from the
grid to the position of the particle to obtain the force at the location of the particle. In the
second step, after updating the positions and velocities, each particle’s ncw position is
checked and particles which have changed subdomains arc exchanged with nearest
neighbor processors. In the third step, the charge density, which is nceded to advance the
electric field, iscomputed by interpolating (depositing or scattering) the particle charges to
the grid-points. After thetrade, all particles arc in the processor with the nearestgrid-
points, but, because the particle interpolation may involve several neighboring grid-points,
aparticle may deposit a portion of its charge to a grid-point which belongs to neighboring
processor. Therefore, each processor contains enough guard-cells surrounding its
subdomain to insure that the scatter is strictly local. In the fourth step, to obtain a consistent
density for al interior grid-points, the values at the guard-cellsare communicated to
adjacent processors and superimposed at the appropriate cells near the boundary. The
number of guard-cells (NG) needed will depend on the interpolation scheme used. Here,
using a standard three-point quadratic scatter, a maximum of two guard-cells in each spatia
dimension (NG=2) at each edge of the processor domain (or, equivalently, two layers of
guard-cells on each face) arc needed. For applications involving higher order scatter, or for
gyrokinetic simulations!? with particles that arc spread over a gyroradius, more guard-cells
may be needed. During the particle and grid trading steps, particles and grid-point data are
buffered and exchanges in groups in order to minimize the effect of the start-up (latency)
time of the communicationcalls.

In our code, the electric field is obtained using a spectral transform solution of Poison’s
equation. In genera, a distributed FFT would be used to form the fastest solution, and to
minimize the memory usage. Since wc are interested in the behavior with respect to the
primary decomposition, we usc a standard sequential FFT solve on each processor. The
consistent density arrays arc combined into aglobal array that is present in each processor,

5

and the global electric field is solved, Then, each processor uses only the field associated
with its primary domain to push the particles. This completes the iteration cycle: particle
updates, moment scatter, and field-solve.

The results presented in this paper correspond to a three. dimensiona physical domain.
Periodic boundary conditions are imposed in the x, y, and z directions. The three
dimensional (d=3) physical domain can be partitioned into subdomain of 1-, 2-or 3-
dimensions as shown in Figure 2. This shows a color rendering of select particles; the
particles are colored by processor andthere are. 64 processors, four in each dimension.
Recall that wc usethe lower case letter d for the dimensionality of the physical domain and
the upper case letter D for the dimensionality of the subdomains. Figure 2 shows a “dlab”
primary decomposition (D==1) where al the processors have arange of x for ally and z.
Figure 2 aso shows the sguare cross section “rod” decomposition (ID=2) and finally Figure
2 shows the D=3 “cubes,” which, for unequal numbers of grid-pointsin x, y and z, will
not actually be cubes. Severa different schemes arc possible for exchanging particles and
guard-cellsin a d=3 code with D=, 2, and 3 partitions. It is clear from Fig. 2, that the
number of processors that must exchange particles and guard-cells will depend on the
dimensionality D of the partitioning scheme used. For D=I dlab subdomains, particles and
guard-cells will only need to be exchanged with neighbors to the left and right (For code
accuracy, particles move less than a grid-point per time step). For D=2 and 3, more
processors will be involved. The method we have chosen is a simple extension of the
method used in the d=1 code of Liewer and Dccyk?.

To exchange particles in the present code, each dimension is treated separately. Particles
only need to be exchanged in dimensions which are partitioned, e.g., for a one-dimensiona
partition (D=1) of the x-axis, particle only need to be exchanged in the x direction. In the
code, thereis aloop over dimensions x, y and z. First, the global periodic boundary
condition isimposed on the particles. Next, if this dimension is aso a partitioned
dimension, each particle’ s coordinate in the dimension is checked. Particles with a
coordinate higher than the processor boundary in the this direction arc placed in a"right"-
going buffer and those with a coordinate lower that than processor boundary arc placed in a
“left’’-going buffer. After al particles have been checked, the left- and right-going particles
arc exchanged with the appropriate neighboring processors and the incoming particles are
unpacked. Note that by buffering the particles, only two communication calls arc needed

pcr partition dimension to exchange all the particles; this minimizes the message-latency
overhead. The pseudo code for the exchange follows.

Cxleft (3) and xright (3): processor subdomain bounds>-ies in x, y and z
For i=l,3 Do
Apply gl obal boundary condi tion
If i is a partitioned dinension then
If (x < xleft (i)) pack in left-going buffer
If (x 2 xright (i)) pack in right-going buffer

Send left-going buffer to left and receive from right

6

Unpack buffer received

Send right-going buffer to right and receive fromleft
Unpack buffer received
Endi f

Enddo

The buffering technique used creates and hen fills holes in the main particle array as
particles arc traded as described by Licwer and Decyk?.

Thus, for a code partitioned in all three dimensions (D=3), particle arc exchanged first in x,
theny, and then z to move thcm to the appropriate processor. Parlicles that move
diagonally arc automatically handled properly in this scheme. By using this scheme, only
two buffers are needed for exchanging the particles as opposed to the 26 that would be
nceded if all three dimensions were considered simultaneously. Similarly, only 6
communication calls arc necessary as opposed to 2.6. For the usual case when particles
move only to “nearest neighbor” domains, onc pass through this loop moves particles to
the proper processor. By allowing multiple passes through this loop, the code can handle
the more general case that particles must move to a processor an arbitrary number of hops
away. Thisis necessary if dynamic load balancing is employed and may be necessary for
other decomposition strategiesas well. To handle such case, the loop is repeated until all

particles have been passed the necessary number of times to reach the appropriate
processor.

The guard-cell exchange following the deposit is handled using the same basic strategy of
communicating and filling in each dimension separately. Note that as long as all guard-
cells arc exchanged and added to appropriate interior and/or guard-cells, al of the corner
cells, which arc receiving deposits from severa processors, arc properly handled by this
scheme. Moreover, since the communication is done inside aloop over dimensions, the
buffers need only be sufficiently large to pass the maximum number of particles or grid-
points that arc traded in each dimension. Note also that by treating the communication
‘separately in each dimension, the code is more flexible and can be more easily modified to
run in one, two, or three dimensions depending on the needs of the physical problem being
studied. Appendix A describes a potential problem for users of the present Intel compiler.
Thisinvolvesissues of machine precision, arithmetic, and the evaluation of conditional
operators - the user of any new compiler should bear in mind that may become a problem.
The problem is avoided by ensuring sufficient number of guard-cells (NG), and looping
over the trade stepto ensure that al particles are in their appropriatedomains before the
deposit step.

At present wcare using Intel Touchstone Delta (512. node) and Intel Gamma (64 nodes)
machines at Caltech. The smaller machine is useful during the development and debugging
phase while the Deltaiis used for the production and performance runs. These machines arc
coarse-graincd memory MIMD: the available memory is about 12.5 Megabytes pcr node for
the Delta, and 15 Megabytes pcr node for Gamma, For our electrostatic code on the Delta

7

wc can fit about 290,000 particles per node. Using 512 nodes on the Delta, we have run
up to 150 million particles with a push time of 0.25 microsecondsper particle per time step
(electrostatic push with quadratic interpolations for gather/scatter). The Delta has at least 10
times the computing power of a single processor Cray Y-MP.

Our code has been written in Express-FORTRAN 13, This is a single-program-multiple-data
(SPMD) variation on multiple-instruction-mul (iple-datii (MIMI)) programming style. The
code iswritten and compiled into a single object code. Each processor runs the object with
a separate program counter and is loosely synchronized via message-passing and global
communication functions. A standard interprocessor buffer ‘exchange’ call is used to trade
particle and grid-point data, When the field-solve is invoked, a standard global buffer
‘combine’ operation is used to collect the separate density arrays into a single global array
that is reproduced on each processor. The processor-geometry, that is, the way in which
the processors map onto x space, is derived from Express automatic decomposition tools.
Each processor isidentified by a physical node number that is between O, and Np-1,
where N, is the number of processors. The physical node numbers are used as arguments
to the communication calls. The user specifics how many processors arc in each
dimension; for example a problem may have8 processorsin the x direction, 4 inthey, and
2inz, giving atotal of N, = 64. Express calls provide the nearest-neighbor processorsin
the physical grid. The position of each processor relative to some origin node (usually the
node the includes the origin of the x coordinate system in its primary domain) is specified
by alogical node number. The logical node number starts as (0,0,()) at the origin and
increments by integer amounts in each dimension. Thisis used to keep track of spatia
offset for each processor relative to the x origin. The logical node numbers can be derived
simply from the information obtained from the Express automatic decomposition tools.

The main particle loop involves the following subroutines, in order: push{), trade(),
deposit(), solve(), and finally a diagnostic routine. The traditional particle gather step
occurs in push(), and the scatter step is in deposit(). We employ three point per dimension
(e.g., quadratic) interpolation for both gather/scatter. The code has been Setup so that,
when the dimensionality d of the code is changed, a switch in a global include file, changes
the interpolation scheme automatically to handle d=1 (three point interpolation), d=2 (nine
point interpolation), and d=3 (twenty seven point interpolation). Communication calls
appear intrade(), where the particles are exchanged; in deposit, where guard-cells arc
exchanged to evaluate the correct particle density; and in solve{) where the separate
processor density arraysarc combined into a global array.

To simplify the gather/scatter steps, array indices within a processor are based on theglobal
indexing, e.g., field arrays are dimensioned as

dimension i_left_array_ bound (3) , i-r i ght_array bound (3)

dinension f ield_array (i_left_array bound 1) . i_right_array bound (1) ,
1 i_lef t_array_bound 2) : i_ right _array_bound (2) ,
2 i_lef t_array_bound 3) : i-right_ _array bound (3))

wherei_left_array bound (i) [i_right_array_bc und(i)] is the global index of thig
processor’ s lowest [highest] grid-point in the ith direction. These arrays boundaries arc
computed from the processor logical hode number, the physical boundaries of the
processor’s subdomain and the number of guard-cells (NG). Thus, if a processor’s
subdomain startsat grid-point k in thez direction, i_1ef t_array_bound(3)=k-Na.
(Logical node number are used nowhere else inthe code; physical node number arc used in
the communication routines.) By indexing in this way, array index references that apply
during the particle gather/scatter stepsare exactly as they would be for a sequential code; no
processor offset arc used in the gather/scatter steps. The array boundary values,

i_lef t_array_bound (i) andi_right_array_bound (i),are passed as subroutine
arguments.

We have also made the code flexible in the following areas: with small changes to an
‘include’ file wc can change between a onc (d=1), two (d=2), and three (d=3) dimensional
code, as well as between slabs (D= 1), rods (D=2), and cubes (D=3) for the primary

(particle) decomposition of the grid. Also, depending on the needs of the gather/scatter
interpolation scheme, wc can easily change the number of guard-cells used.

The code uses dimensionless units. Thus the time step between successive cycles of the
code is normalized in terms of the inverse plasma frequency w,? = (4nn.e%m¢)-12 where
n. iIsthe average electron density, and m,, is the electron mass. Velocitics arc normalized by
o,A Where A isthe grid spacing. We have only one dynamical species present (electrons);
the ions arc assumed to be a charge neutralizing fixed background.

3. Performance Results

In this section, timing results from three sets of runs are presented and analyzed to study
the parallel efficiency of the particle push portion of the code. The first set shows the
dependence of the efficiency-on the dimensionality D of the domain decomposition and the
scaling of the efficiency for afixed sizeproblem size, The second set shows the variation in
efficiency for a scaled problem. The third set shows the dcpendcncc of the efficiency on the
percentage Of particles exchanged per processor pcr time step.

In our parallel code, performance is degraded by communication needed to trade particles

after the position update and 1o exchange guard-cell information afler the charge deposit.
We define the communication time as

Teomm = Tie + Tgus (1)

where 1, is the particle trade time and 7, is the guard-cell communication time. g,
incorporates the time to actually exchange the cells and the time to pack and unpack them,
all of which arc parallel costs. The trade timer,, incorporates both the time to actualy
exchange the particlesand the timeto unpack the traded particlesinto the particle array.
Unpacking is actually not acommunication cost, but it isa parallel cost. Typically the

9

unpacking time isbetween 20% and 30% of the actual exchange time, indicating the greater
expense of interprocessor communication relative to the local memory access involved in

the unpack. Generally 1, and 1y, are about the same magnitude for these runs. These times
arc discussed more in Sec. 4.

W define the computation time Tcpu as
TCPU = Tpush + Tde + Toes)

where Tpush IS the time to perform the particle force interpolation (gather) and velocity and
position updates, Tde is the time to deposit the particles’ charge onto the grid (calculate the
charge density), and 1, is the time to check the particles position against the global and

local boundary and pack the particles for trade as necessary. Note that the pack portion of
Tvc i, in fact, a parallel cost. However, it is much smaller than the boundary check which
must be performed even in a sequential code. We use this definition in order to be able to
compare measured times with predictions using the formulas derived in Sec. 4. The three

costsin Tcpu are all proportiona to the number of particles per processor N/Np where N is
the number of particles and Np is the number of processors.

Using these definitions, the total run timeis 1 == Teomm+ TcPU and we define the parallel
efficiency of the code to be

& =1/(1+ Teomm/TcPu)- 3)

For a onc processor run with no communication, the efficiency is 100%. We have not
included any degradation in efficiency due to processor load imbalance because the cases
run have uniform particle distribution and equal processor computation loads.

a. Variation with Dimensionality of Domain Decomposition

First, the dependence of the parallel efficiency on the dimensionality of the domain
decomposition D was investigated. A fixed three-dimensiona (d=-3) problem was run for
D=l, 2 and 3 on various numbers of processors. This problem is chosen to be the
maximum that fits on a single processor: N=643=262, 144 particles, N,=323 grid-points.
Other parameters are At=0.2, and plasma thermal velocityVti,=0.812 (wc used a truncated
Maxwellian distribution, which we had found useful for debugging, purposes). For the
single processor run, the size of the executable that is |oaded onto each node is 10.2
megabytes. For more than one processor less memory is required since the fixed number
of particlesis divided amongst the processors. For a slab (D=:1) partition we performed
runs with 2,4,8, and 16 processors. For a partition into rods (D=2), the number of
processors used was 4 (=22, i.e. 2 processorsin x and 2 processorsiny), 16 (=42),64
(=82), and 256 (=162). For cubes (D=3), We used 8 (=23),64(= 4?), and 512 (=83).

10

The results for efficiency e versus the number of processors Ny are plotted in Figure 3 for
D=| (open circles), D=2 (open triangles) and p=3 (open squares). The efficiency
decreases with increasing number of processors as expected for a fixed size problem. The
fact that it is soclose to 1 indicates how small the communications burden isrelative to
CPU. Also plotted in Fig. 3 is the percent. of particlesu aded pcr processor per time step
for D=1(filled circles), D==2 (filled triangles) andD=3 (filled squares). Note that, for the
D=3 case withNI,=512 and 11% of a processor’s particles exchanged pcr time step, the
efficiency isstill 91.570. As expected, at a fixed number of processors, the percentage of
particles traded is largest for D=1 because. the dlab subdomains have the largest surface to
volume ratio. Figure 4, which plots Tcomm/Tcpu for the same cases for D=1, 2, and 3
(using circles, squares and triangles respectively), shows the steady increase in
communication cost as the processor subdomains get smaller and relatively more particles
and guard-cells are being traded. Note, however, that in both Fig,. 3 and Fig. 4, the curves
for dl three values of D lic essentially on top of each other showing that the communication

to computation ratio and, thus, the parallel efficiency is relatively insensitive to D for these
parameters.

The communication to computation ratio for this code should scale as the surface to volume

ratio, suggesting that Tcomm/tcpu Would decrease with D. The surface to volume ratio of a
subdomain for arbitrary dand D is

S/V=2 D Np/D/ N,/

where N, is the total number of grid-points (so N1/ s the number in each direction) and
2D is the number of surface between processor subdomains. Since communication is only
necessary across faces separating processor domains, the number of surfaces increases
with D. Note that this expression for surface to volume ratio applies strictly to the case of
periodic boundary conditions, and a uniform plasma where the domains are of equal size.
At the end of Section 4 we discuss the Situation of an inhomogencous plasma. At this
stage We note that for Jarge problemswith N> 512 the communications will be dominated
by the interior domains - away from the boundaries. For small N;, this expression is
somewhat artificial (in particular for Ny =1it is only a measure of $/V for asingle periodic
cube, however clearly no communications are needed in a single-processor sequential
code). Aswec stated in the introduction, the goal of the paper is to show that the parallel
performance of the 3D GCPIC method is efficient for realistic problems (N,>>1), and to
show that it is predictable so long as some machine parameters such as flop rate and
communication rate arc precal culated. It can be seen that there are two reasons why
Teomm/TCPU @ppears insensitive to D for small values of N,. First, for small N, the
exponential decrease (N,! P) for increasing D is compensated for by the linear increase in
the number of faces. Note that the largest number of processors used for D=1was N,=8
for which 8/V(D=1)=16/ N, vs, S/V(D=3)=12/N,"d and thus the ratio is 4/3. The
second reason that the efficiency isinsensitive to D for these runsisthat as D increases,
more communication calls arc initiated since wc exchange information separately in each
dimension D of the decomposition. Thus, duc to communication latency, the extra

11

communication calls needed for higher D counteracts the decrease in the total number of

bytes communicated. For large problems on large numbers of processors we expect that

the dependency of parallel efficiency on the dimensionality of the decomposition D to

become more significant. Thisis already apparent for the percentage of particles traded for “
D= 1in Figure 3. Our problem was simply not large enough to demonstrate the behavior

for N,,>>16. Similarly, the difference between D =2 and D = 3 is not so apparent even

for N,=512, however for large problems on larger computers we expect the difference to

be more significant.

Also shown in Fig. 3 arc the theoretically calculated values for the percentage of particles
traded for D=], 2 and 3 (dashed lines); the agreement is excellent as expected for our
known truncated Maxwellian distribution. The percentage traded is the number of particles
traded per processor per time step Ny divided by the number pcr processor N/Np. The
number of particles traded per time step will be the flux through each subdomain face
multiplied by the surface area of the face times At times the number of faces. The number
of subdomain faces is 2D since particle exchanges arc only necessary through faces
separating processor subdomains. Here, wc assume Ax =Ay=Az=1and that an equal
number of processors (N,1/P) isassigned to each decornposition dimension asin Fig. 2.
The total number of grid-pointsis Ny and Ng1/ is the number of grid-pointsin each
direction where d=3 for the three dimensional cases in thepaper. For athermal species the
flux of particles that cross atwo- dimensional surfaceis given by C,n vy, where vy, is the
thermal (rms) velocity, n is the particle density (n=N/N,Axd), and ¢, is a coefficient which
is 1/(2m)!2 for a homogeneous maxwellian distribution! (for a directed beam wc can
replace vy, by the beam velocity, and C,- 1). Assuming square cross section rods and
cubes, the surface area of each face of a processor domain is Ng@1AAx4-1/ N,®-D/D The

number traded is then, for arbitrary code dimensionality d and decomposition
dimensionality D,

N =2 D ¢4 (v, At/AX) N/ (N4 N, D-1/D), (4)
and the fraction of particles traded per processor per time step is
N /(N/Np) = 2 D c4 (vin At/AX) NP/ N, 14 (5)

The predicted percentages shown in Fig. 3 were calculated using this equation. Note that
the fraction traded is proportional to the surface to volume ratio, S/V=2DNp!/1/N, 14,
Thereis, in fact, asystematic but small error not visible on the graph which wc attribute to
our usc of atruncated maxwellian distribution. By comparing Eq (5) with the actual
numbers of particles traded amcasured valuec, canbe calculated. 1 ‘orall of the runsin the
present series this quantity is roughly constant, and has an arithmetic mean of ¢4y, = 0.43
compared with C,=1/(2x)!1/2 = 0.40. In future calculations based on the above equations
wc will usc the valuecsy, in place of C,.

12

These first seriesof runs were performed with the default (-O 1) compiler option. Forthe
singic processor run, Tpush = 50.0 seconds, . (essentially the time to check the particles
for boundary conditions) = 5.75 seconds, and ta.=16.6 seconds. Note the relatively
higher cost of computation plus gather/scatter compared with the check of boundary

conditions. This s partialy because the latter dots not involve the loop cache incfficiency
associated with grid-points from the random particle positions.

b. Efficiency for Scaled Problem

In the next series of runs, the efficiency was studied as the problem sized increased linearly
with the number of processors so that the problem size in each node was fixed. All runs
used the D=3 cube decomposition, The problem size on each node corresponds to the
fixed problem size for the casesin Figs. 3 and 4 and is the largest problem that fitsin one
node: N=643=262,144 particles and N,=323 grid-points. With this size problem in each Of
the 512 nodes, the total number of particlesis N =512:{ =134 million and the total number

of grid-pointsis Ng= 2563= 17 million. Intuitively this scaled problem should be highly
efficient Since on a percentage basis no more particlesor grid-points arc communicated as
more processors arc used, Note that this large number of grid-points could not fit on a
single processor. Hence for these large runs, the field- solve (including the full N, field
array) was not applied. Only the local field to each domain was included in each processor,
and that is how it should be for a distributed-memory massively-paldlcl agorithm. In this
case wc ran the code only for the purpose of obtaining numbers for particle pushing
algorithm and associated communications.

Theresults arc summarized in Fig. 5. The efficiency € (sguares) uses the left axis which

goes from 0.95 to 1.0; the measured ratio Teomm / Tcpu (Circles) uses the right axis which
goes fro O to 0.05. Note that the efficiency is dways>99% and is independent of the
number of processor used as expected for the scaled problem runs. Thisillustrates the
extremely high efficiency for this algorithm when the nodes are well utilized. In the runs
with N> 1, there arc about 3,400 particles traded per processor representing about 1.3% of
particles. The predicted ratio Teomm/Tcru (dashed line) will be discussed in Sec. 4.

c. Variation with Particles per Processor

The casesin Figs, 3-5 showed very high efficiencies when a small portionof the particle
were traded. To test the efficiency of the algorithm when alarger percentage ofthe particles
were traded, a series of runs were made with aconstant number of particles but a
decreasing number of grid cells. For our three-dimensional code, Eq. (5) shows that the
percentage of particles traded is proportional to N, %3, the number of grid-pointsin each
dimension d, for other parameters held fixed. The results of these runs are shown in Fig. 6
plotted as a function of N4!3, the number of grid-points in each direction. The top curveis
the parallel efficiency (triangles) and the second curve is thefraction of particles traded per
processor per time step (sguares). Note that even when 40% of the particles in each

13

processor arc traded at each time step, the agorithm still has 95% parallel efficiency. Also
plotted arc the measured Teomm/Tcru (circles) and the predicted Teomm/Tcru (dashed line).
The predicted ratio will be derived and discussed in the next section.

4, Performance Analyss
a. Theoretical Discussion

Here, wc derive expressions for the timing and efficiency in terms of code and machine
dependent parameters, We have adopted a similar formulation to that of Lee and Azari!s
and wc loosely follow their nomenclature. However, in our work wc have more closely
parameterized the behavior of our code. The expressions derived here were used to
generate the predicted curvesin Fig. 5 and 6 and can be used to predict scaling behavior on

other large massively parallel computers once the machine dependent parameters are
known.

The code efficiency was defined in Eq. (3) in terms of the communication time Teomm and
the computation time 7, defined in Eq. (1) and (2,) respectively. First, we derive an
expression for the communication time Teomm = Tu + 1. Consider Ty, incorporating both
the time to actually exchange the particles and the time to unpack the traded particles into the
particle array. This trade time canbe written as the number of bytesof information traded
divided by an effective bandwidth (in bytes per second) for trading particle information B.
Thiseffective bandwidth will be considerably lower than the rated channel hardware
bandwidth because a) overhead due to communication startup (latency) adds some
nonlinearity and b) it includes the user-time to unpack the particle information as wcll as the
system-copy time. Thus, in general, B, will depend not only on the hardware, but, also
on the size of the messages being passed because of the effects of latency. Wc write

Ty = Cp C3 Nu / Bu . (6)

where Ny, is the number of particles traded per processor per time step [Eq. (5)], co =4
bytes pcr word (single precision), and ¢3 = 7 words of information pcr particle (3 space, 3
velocity and atag). Similarly, 1z, which incorporates the time the actually exchange the
cells and the time to pack and unpack them, can be wr itten as the number of bytes of guard-
cell information exchanged (bytes per word times 1 word per guard-cell) divided by the
effective bandwidth for exchanging guard-ccl] information B . Thus, with N, the number
of guard-cells, wc write

Tou=C0 N,/ Bgy. (7)

Asfor By, By Will be less than the rated hardware bandwidth and will depend on message
size. The number of guard-cells that must becommunicated is the number of guard-cells
pcr face (it, the number of guard-cellsin each dimension multiplied by the number of grid-

points pcr face) multiplied by the number of faces (= 2 D). The number of grid-points per
face is Ny (d-D/id /N D-D/D_giving

14

Ngu = 2 D NG N(-1)d /N, 0D/ ()

where NG is the number of guard-cells in each dimension at each domain boundary. As
discussed in Sec. 2, NG is generally determined by the interpolation scheme used and is
chosen so that the interpolations can be done locally. For the quadratic interpolation

scheme used in the present code, NG=2.

Theeffective bandwidths By, and By in Egs. (4-5) are machine dependent parameters that
must be determined empirically. Ideally, these bandwidths would be constant for a given
computer, but, because of the communication overhead associated with sending a message
(latency), we expect an additional dependence on message sire. Moreover, because 1, and

Tgu A0 include some buffer packing and unpacking, they will, by definition, be lower than
the rated channel communication bandwidth. We will determine these for the Delta using
the runsin Sec. 3aand b (Figs, 3-4).

Note that for a code which uses a local finite difference field-solve and uses the primary
decomposition to partition the field-solve, the only additional communication cost will be
the time to exchange the field guard-cell information. Thus this analysis can be extended to

include communication costsof such afield-solve by simply multiply Eq. (7) by the total
number of field quantities.

Next, we derive an expression for the computation time Tcpu = Tpush + Tde + Toe» Where

Tpush is the time to perform the particle force interpolation (gather) and orbit update> Tae 18
the time to deposit (scatter) the particle charge to the grid, and Toe is the time to check the
particles global and local boundary and pack the particles for trade asnecessary. With the
exception of packing the particlesto be traded (a negligible contribution), these times are

proportional to the number of particles per processor N/N, and we parameterized this time
as

Tcru=C,(N/Np) / F, 9)

where C,is a constant taken to be the total number of FLOPS involved in the particle and
charge dengity update pcr time step and F is an effect.ivc flop-rate for the computation
which has units FLOPS and, as above, is an ‘effective’ rate whose value will be Icss than
the rated FL OPS pcr processor. For our code in three dimensions (d=3), wc estimate C,=
404 (294 in the gather and orbit update, and 110 in the scatter determined by counting +
and * each as1FLOP). Included in Tcpu is aso the memory access time associated with
the particle pack and boundary condition chccker in subroutine trade(). Thus, although
thereisa small cost incurredbecause of parallel processing, wc characterize it together with
other processes whose cost is proportional to the number of particles pcr processor N/N..
Woc note that in our implementation the particle boundary conditions arc applied at the same
time as the packing process and the comparison with the primary domain boundaries uscs
amost the same FORTRAN code as the comparison with the global physical domain

15

boundarics. Equation (9) defines the cffective F1.OP rate F which must be determined for
each parallel computer; we will usc the runsin Sec. 3ato evaluate it for the Delta.

The quantity Teomm / Tepy Can then be written as

Teomm /Tcpu="Te/ Topu + Tgo/ Teru (o)
where
T/ Tepu = (2D cgezcacs/cy) Ng'lld Np]/D F /By, and (11)

where C,= vin At/Ax. Note that both ratios depend on the surface to volume ratio of the
subdomains, S/V=2DN, P/ N1/, While equations (1)-(12) parameterize the timing of the
code, at this point the coefficient F, as well as By, and B are unknown. The fixed

problem runs from Sec. 3.a are used to determine thcm empirically.

Figure 7 shows the effective FLOPS rate F, normalized to one megaFLOPS, determined
from Eqg. 9 using the measured Tcpu for the runs of Sec. 3.a for D= 1,2 and 3 plotted as
circles, triangles and squares respectively. The plot shows that F is approximately constant,
independent of the number of processors N;, and the di mensionality of the domain
decomposition D. Interestingly F shows a small increase with Np. We also noticed that for
the first 30 time steps of these runs Tcpu showed a steady increase of about 8%. This can
be traced to a gradual diminishment of cache efficiency as particles, which were initialized
uniformly in space, are randomized duc to their thermal motions. Thetimes that we have
used in this study arc averaged over the last five time steps of athirty time step run. This
increase is an interesting insight into well known local memory access inefficiency of the
gather/scatter process -- the Tcru is initially smaller because wc have effectively sorted the

particles relative to the grid at time step 1. The increase in Tcpu occurs at a different rate for
increasing Ny, that is, as the domain of each processor becomes smaller. The differing rate
of increase of Tcru is responsible for the apparent small increase in 1.

Figure 8a shows the effective trade bandwidth B, and Fig. §b the number of particles and
bytes traded for D=1, 2, and 3 plotted as circles, triangles and squares respective] y. The
dominant behavior is the drop in communication speed as the number of bytes traded
decreases for D=2 and 3. Thisis the anticipated degradation duc to the communication
latency (start-up) cost as the size of buffers decreases. Intel!¢ state that the latency for
standard node-to-node communications becomes significant when the number of bytesfalls
below 103, We observe similar behavior here for the Express buffer-exchange routine that
we usc. Note that B, contains a particle buffer-unpack cost that is between 20% to 30% of
the overall particle-trade cost, but its contribution will vary approximately linearly with the
number of bytes traded. Note also that the bandwidth islower for D=3 than D=2 when the
same number of bytes arc exchanged. This is because the number of messages actually

16

passed is proportional to D because we exchange in each decomposition direction
separately, as discussed in Sec. 2, and thus effects of latency arc increased.

Figure 9a shows the effective bandwidth for guard-cell communication Bgy, while Fig. 9b
shows the number of guard-cells (and bytes) traded for D= 1,2 and 3 plotted as circles,
triangles and squares respectively. For D=2 and 3 as above, B, fals of with the number of
bytes communicated. (The observed slight increase for D=1 occurs because the code was
written to implement periodic boundary conditions in the same loop that communications
arc performed. The actual number of cells traded pcr pr ocessor remains constant for D= 1.)
Note that By, is smaller than By, due in part to the fact that By, contains both a guard-ccl]
buffer pack and unpack costs while By, contains just the particle unpack costs and in part
duc the on-average smaller number of bytes traded. B, does not show as large a difference
between D=2 and D=3 presumably because of the stronger dependence on the packing and
unpacking which isindcpendent of D.

b. Comparison with Measured Code Times

Using the results of the above analysis and the determination of the effective bandwidths
and their dependence on message size, wc now calculate the predicted ratios Teomm/Tcru
and Ty, / T for other runs and compare it with measured ratios.

The predicted Teomn/Tepu Was calculated for the scaled problem runs (Fig. 5) using Egs.
(10-12) with an effective flop rate of F:= 1.47 (Fig. 7) and using usc By, = 0.96 and By, =
0.49. These bandwidths arc found from Figs. & and 9 extrapolating to the value appropriate
to the number of bytes being exchanged, calculated using Eqs. 4 and 8. Both measured and
predicted ratios of Teomm/Tcru are shown in Fig. 5 and the agreement in excellent. For these
scaled problem runs, the predicted ratio is constant as measured. We note that the particle
trade and the guard-ccl] exchange each compose half of the estimated ratio. The scaled runs
in Fig. 5 were performed with the -01 compiler option. When the -04 option is used the
effective FLOP rate F increases by afactor of around 2.8. With this option the scaled runs
perform with a push time of around 250 nsec per particle pcr time step.

The theoretical analysis was also used to predict the performance for the runsin Fig. 6. For
this case, N,=512, N=5123, and only N, was varied. Using Figs. 7 and 8, the quantities F
= 1.47, and B, = 0.96 were used for all N, since these depend only on Ny,. However, the
amount of guard-cell information exchanged varied with N, and, thus the value of By, ,
interpolated from Fig. 9, varied with N,. (The values used were By, = 0.31.0.66, 0.96,
0.96 for N1/3 = 64,128,256,512 respectively.) The comparison between the estimated
and measured communication ratios, Teomm/Tcru, shown in Fig. 6 is quite good. Wc note
that the run with N3 = 32 corresponds to the Np=:5 12, D=3 fixed problem casein Sec.
3a(Fig. 3&4) inall parameters except the total number of particles. In the former 27,000
particles were traded on average (1170), while in the fixed problem run 55 particles were
traded (also 11%). However in the former the communication ratio is 0.0138 while for the
fixed problem run it is 0.085. The improvement is due to the higher effective bandwidth
B, asthe larger number of particles traded reduces the effect of communication latency.

17

Asafina example, in Fig. 1() wc have also compared the measured and estimated (dashed
line) values for theratio 1, / T, for aset of runs in which only the number of particles was
varied. For these runs, Ny=5 12, D=3 and N,!/* = 32. N was varied from N!/* = 64 to
512. We note that the run with N3 = 64 corresponds to theN1>=512, D=3 fixed problem
case in Sec. 3a(Fig. 3&4). As expected, the ratio iS very sengitive to the number of

particles and the agreement between the measured and estimated valuesis excellent.

C. The Case of Inhomogeneous Plasmas

The situation where the density of particlesis non-uniform adds tothe complexity of the
resulting code, however it doesnot necessarily ater the performance from what we have
described to this point. Since the CPU cost is so dominant, load balancing requires that
the ratio of particles to processors be a constant everywhere in the domain. The software
must be altered to alow for domains of varying size such that the ratio N/Np; is a constant.
Woc have added a ncw subscript here ‘i’ to distinguish between regions where the density
is changing -- therefore, N, (Npi) is the number of particles (processors) assigned to region
‘i” where the density is Ni/Ng; particles per local grid point, What changes is the ratio of
the time to communicate particles to the time to communicate grid points. From Eqs. (11)
and (12) wc can easily show that

Twi | Tgui = (¢ C G ING) (B{:./By) Ni/Ngi (13)

That is, for Ni/Np; = constant, the ratio of cost to communicate particles versus the cost to
communicategrid points is given by some constant tir nes the local density of particles per
grid point, For the parameters used in the first set of (uniform density) runsin Section 3a
thisratio is . / Tgw ~ 0.1(N/Ny) = 0.8; clearly for eight particles per grid point this cost
ratio is well balanced. For the case of strongl y inhomogencous pl asmas wc would expect
this ratio to become unbalanced in some regions. However, while the CPU cost is so
dominant, this imbalance is not important. Most of the results of this paper have been
quoted for the unoptimized compiler option (-O 1). Bence any weakness in the above
argument would not have been exposed. However in in the case of highest optimization
(-04), our conclusion dots not change. Only when the processor speed is increased
considerabl y with respect to the communication speeds for MIMD machines - and we do
not expect this to happen in the near future - woul d our conclusions be atered. We
emphasise our prior point that wc have provided a consistent framework whereby the
performance can be assessed in terms of the simply derived machine parameters F, B,
By, and memory per processor.

4. conclusions

Wc have developed a three-dimensional electrostatic particle-in-cell (P1C) plasma code for
MIMD massively parallel supercomputers such as the Intel Delta and Gamma. The particle
push portion of the code, which accounts for most (-90%) of the computation, is
implemented using the GCPIC algorithm?2 in which the particle computation is divided

18

among the processors using a domain decomposition.] ‘hiswork is an extension to three
dimensionsof previouswork using the GCPIC algorithm?23. In the parallel code,
inter-processor communication is necessary at two stages in the particle push. After the
particle Positions are updated, particles which have left a subdomain must be passed to the “
appropriate processor. ‘After the charge deposition, guar d-cell information must be
exchanged. Very high parallel efficiencies arc foundfor the particle push, with the
efficiency >99% for cases when the nodes are fullyutili zeal. The efficiency was found to be
> 95% even when up to 40% of the particles per processor per time step were traded.
Because of this high efficiency even for large percentages of the particles traded, the

GCPIC agorithm-should also-be efficient for non-uniform particle distributions where sub-
domainsin regions of high particle density will be relatively small with large fractions of
the particle leaving each time step.

In athree-dimensional code, the simulation domain can be partitioned in 1,2 or 3
dimensional subdomains (slabs, rods, cubes). The ratio of communication to computation
scales as the surfaceto volume ratio of the subdomains and thus a three-dimensional
partition should be optimum. The efficiencies of the particle push was studied as a function
of dimensionality of the subdomains. For the parameters studied, the efficiency was
relatively insensitive to the subdomain dimensionality. This resulted from an increasing
number of communication calls with higher subdomain dimensionality counterbalancing the
surface to volume ratio effect. Only for small numbers of processors (< 8) will these effects
cancel. For large number of processors, the surface to volume effect will dominate andthe
three-dimensional partitions will be more efficient.

Equations for predicting code performance based on code and machine dependent
parameters were also devel oped. Machine dependent parameterswere found from one set
of runs. Predictions using the equation were in excellent agreement with measured
performance in other sets of runs. Thus these formulae can be used to predict performance
on other parallel computers once the machinedependent parameters have been established
from a set of “calibration” runs. We expect that these formulae will be useful for the case

of inhomogencous plasmas with non-periodic boundary conditions, as discussed in Section
4.

Acknowledgments

Wc would like to acknowledge useful discussions with Mark Kiefer, David Forslund,
Edith Huang, Bob Kares, Erik Matson (Jet Propulsion Laboratory Scientific Visualization
Laboratory), David Payne (Intel), and Patti Sparks, This work was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The research was support in part by
Sandia National Laboratory, Albuquerque and in part by NSF under Cooperative
Agreement CCR-88809615. The computations were performed on the Intel Touchstone
Delta parallel supercomputer operated for the Concurrent Supercomputing Consortium by
the California Institute of Technology; access was provided by NASA.

19

Appendix A. Discussion of Machine Precision and Compiler |ssues.

A common operation in any particle code involves the addition of an integer or half integer
to a particle position. This happens when periodic boundary conditions are applied, and
during the calculation of array indices during gather/scatter steps. Consider firstly the
application of periodicity. At present the global physical domain is taken to be -0.5 <= xi <
N;-0.5, where subscript i refersto spatial dimension, xi is the. particle position, and N,is
the number of grid-points in that dimension. Consider a particle whose position is -0.5-¢

wheree isclosc to machine precision, but sufficiently finite that FORTRAN if(x< -0.5) is
true. In that case the periodicity conditionisx; = xi + N, which should be evaluate to N;-
0.5-e. However the present 1860 compiler on the Delta evaluates this to exactly N;-0.5.
This number not satisfy the condition of being inside the physical domain. The solution is
to make surethat the boundary conditions are applied twice, so the particle is returned to -
0.5. The problem has another manifestation in that a particle at position N;-0.5-& will, for
the same reasons, incorrectly identify its nearest grid-point as int(x+ 1.5) = N,+l, thus
incurring the possibility of a segmentation violation during the scatter step. This problem is
handled by ensuring the at least two guard-cells are used at both ends of each domain for
three point interpolation. In general, the physical domain boundaries do not need to lic on
half integer (or even integer) positions, however some care is always needed to ensure
enough guard-cells arc used.

20

References

(1) C.K.Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation,

(McGraw-Hill, Ncw York, 1985); R. W. Hockney and J. W. Eastwood, Computer
Simulatioon using Particles, (McGraw-Hill 1981).

(2) P.C. Liewer and V.K. Decyk, “A General Concurient Algorithm for Plasma Particle-
in-Cell Simulation Codes’, J. Comput. Phys. 85, 302 (1989).

(3) R.D. Ferraro, P.C. Liewer, and V.K. Decyk, “Dynamic load Balancing for a 2D
Concurrent Plasma PIC Code”, J. Comput. Phys. 109, 329 (1993).

(4) J. Wang, P.C. Liewer, V.K. Decyk, “A Parallel Three-Dimensional Electromagnetic
PIC Code for MIMI) Parallel Computers,” (submitted for publication, 1994).

(5) .M. Dawson, V.K. Decyk, R. Sydora, and P.C. Liewer, "High-Performance
Computing and Plasma Physics,” Physics Today, March, p. 64 (March 1993).

(6) D.W. Walker. Particle-in-Cell Plasma Simulation Codes on the Connection Machine,
Computing Systems in Engineering, 2, 307 (1991).

(7) R. G. Honhlfeld, N. F. Comins, D. Shalit, P. A. Shorey, and R. C. Giles,
Implementaion of Particle-in-Cell Stellar Dynamics Codes on the Connection Machhw-
2, J. Supercomputiag7,417 (1993).

(8) T. Theuns, Parallel P3M with Exact Calculation of Short Range Forces, Oomp. Phys
Comm. 78, 328 (1994).

(9) Z. Johan, T. J. R. Hughes, K. K. Mathur, and S. L. Johnsson, A Data Parallel Finite
Element Method for Computational Fluid Dynamics on the Connection Machine
System, Computer methods in Applied Mechanics and Engineering 99, 113 (1992).

(10) H. D. Simon, Partitioning of Unstructured Problems for Parallel Processing,
Computer Systems in Engineering 2,135 (1991).

(11 J. K. Samon, M. S. Warren, G. S. Winckelmans, Fast Parallel Tree Codes for
Gravitational and Fluid Dynamical N-Body Problems, The International Journal of
Supercomputing Applications 8, 129 (1994).

(12) W.W. Lee, J. Comput. Phys. 72, 243 (1987).

(13) J. Flower, and A. Kolawa, Physics Reports 207, Nos. 305, p. 291 (1991) North
Holland.

21

(14) F. Rcif, Fundamentals of Statistical and Thermal Physics, (McGraw-Hill, New Y ork,
1965)

(15) N.G. Azari and S.-Y. Lee, “Hybrid Task Partitioning for Particle-in-Cell Simulation
on Shared Memory Systems’, Proceedings of International Conference on Distributed
Computing Systems, pp526-533, Dallas, TX, May 1991. S.-Y. l.ee and N.G. Azari,
"Hybrid Task Decomposition for Particle-in-Cell Methods on Message Passing
Systems’, Proceedings of international Conference on Parallel Processing, vol. 111,
ppl41-144, St. Charles, IL, August 1992.

(16) David Payne, Private Communication, (1992).

22

Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

GCPIC domain decomposition for a two-dimensional code. Each processor has a
sub-domain of the grid, the particlesin it, and guard-cells around the perimeter.

Possible GCPIC decompositions of a three-dimensiona grid. One dimensional
“Slabs’ (D=1), two-dimensional “rods’ (D=2), and three dimensional “cubes’
(D=3). Showing particles colored by processor.

Plot of measured paralel code efficiency (top curve and left axis) and percentage
of particles traded (lower curves and right axis) versus log,Nj, for D=1 (circles),
2(triangles), and 3(squares) for fixed problem size runs. The predicted
percentages of particles traded arc plotted as dashed lines.

Communication to computation ratio Teomm/TcPU versus logoN,, for D=1 (circles),
2(triangles), and 3(squares) for fixed problem Size runs.

Parallel code efficiency (left axis) and Teomm/Tcru (right axis) versus number of
processors N, for scaled problem inns. The problem Siz¢ Per nodeis fixed so

the problem size increases with Np.. The predicted ratioTeomm/Tcpus derivedin
Sec. 4, isplotted as a dashed line.

Parallel code efficiency (triangles), fraction of particles traded NN (squares),
measured Teomn/lcpu (circles) and predicted Teomm/lepu (dashed line) and versus
the number of grid-points in one direction N,!/3. The expression for the
predicted Teomm/lcru is derived in Sec. 4.

Effective FLOPS rate F versus log,N,, for D=1 (circles), 2(triangles), and
3(squares) derived from the fixed problem runsin Figs. 3 and 4.

(a) Effective bandwidth for trading particles Bw versus logoN,, for D=1 (circles),
2(triangles), and 3(squares) for fixed problem size runs. (b) Number of particles
and bytes traded versus log,N,, for D=1(circles), 2(triangles), and 3(squares) for
fixed problem size inns. The bandwidth di ops as the number of bytes traded
drops due to communication |latency (overhead).

Figure 9 (a) Plot of effective bandwidth for trading Suard-cells B, versuslog,N, for

D=] (circles), 2(triangles), and 3(squares) for fixed problem size runs. (b) Plot
of the number of guard-cells traded versus logaN, for D=1(circles),2(iriangles),
and 3(squares) for fixed problem size.

Figure 10 Measured(x) and estimated (dashed line) Values for the ratio Tgu / T VS. nUmMber

of particles N for runs with N,=512, D=3 and Ng!"*=:32,

23

——

Figure 1

6no Diﬁiénéloﬁal 'Decohbbéifion
SR

time: 0.2

time: 0.2

Three Dimensional Decomposition

Figure 2

time: 02

% Particles Traded
m o o o o
— o0 O <t AN o
< T T T LA A ?
b /
B \ —— B oT
R o /
1 | .
) . i
| | | .] Lo \u/D.
: Z
v AL %
. 5
\
[H o™
i 4
f \
¢ t o
1
w

X
o

0.2

0 ©
o o

3 Aousioly3 |ojieled

CcrPU

comm

0.1

0.08 "
0.06 —
0.04 |
0.02 -
0 '/””f
0 1 2

Figure 4

Paralle Efficiency ¢

0.99

0.98

0.97

0.96

0.95

pumm— | I I T] i
—— ;
-<- ¢]
T T ':
comm CPU i
o —]

| | | ! |
1 2 3 4 5 6 9

N
log,(N)

Figure 5

o
o
a

0.03

0.02

0.01

wwoo

ndo

Value

Fractona

1 S E— 4
Jr//“ o
H €
0.8 [
0.6

0.4
0.2
0
8 16 24 32 40 48 56 64
N
9
Figure 6

16

(8dO1dN 4

~ ™ N
— — —

sled dOTd eAldald

(N)

log

Figure 7

1

D=

N
—

© < N
o o o

x
o

(sa1kqn) ‘g uipMpuRg 8AROBYHT

log,(N)

Figure § (a)

Kbytes Traded

N © (@) < (e0] (qV}

< ™ (o] QA ~ ~— ©
-_u_-_—-—--_-_-_—__—ﬁ-—__—-_—_—__-

—

L1

o o o

(@) o o

7o) o Lo

- —

pepesl 8|oiled

w

|ogz(NP)

Figure 8 (b)

gu

B (Mby ss

0.6

0.5

0.4

0.3

0.2

0.1

IY'T!IIT‘]TTVI]III
H :

' T NI ST AT T AT S ST S0 U B A N A A

Figure 9 (a)

Kbytes

20

15

10

Figure 9 (b)

Tt /1

10

tr

0.1

gu

0.01

0.001

]
;
]
;
1 Illlllll 1 IIIIAJ

T ll!l‘ll]

llll

T T llll”‘

T lllllll‘

PN SR DU W W T Lo 1 | I R | RS W B O
0 100 200 300 400 500 600
N1/3
Figure 10

